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Abstract 
The equity market is known for its uncertainty and randomness. While the 
market and the participating traders may seem like independent entities in their 
own right, but it is the foray of traders that makes the market in a random walk, 
as the market’s volatility influences the traders’ judgement on which action to 
take; the market and traders are “entangled together” in this way. This paper 
presents a methodology to model both the market’s volatility and traders’ actions 
by drawing on the concept of quantum superposition to illustrate that it is in-
deed the “interactions” of both the market and traders that result in the random 
walk, fully conforming to the efficient market hypothesis. We’ve also developed 
an AI assistant economist that’s powered by a quantum-like evolutionary algo-
rithm to produce short-horizon predictions of the future trend of the market 
based on Darwinian natural selection. 
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1. Introduction 

The stock market has been known to be a volatile place (Shiller, 1991; Knight, 1921; 
Baaquie, 2007; Fox, 2009). In 1900, Louis Bachelier wrote his Ph.D. thesis, The 
Theory of Speculation, which formulated the first mathematical theory of the sto-
chastic processes of the market (Bachelier et al., 2006). In 1965, Eugene Fama de-
veloped the Efficient Market Hypothesis (EMH), which states that financial mar-
kets are “informatively efficient” and that no one can accurately predict the mar-
ket’s future by any means possible (Fama, 1970). EMH complements the fact that 
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the market is indeed on a random walk, and that the current price of stocks reflects 
all the available information. In 1973, Fisher Black and Myron Scholes developed 
the BSM model that describes the market’s behavior in pure mathematical terms 
(Black & Scholes, 1973), which provides a theoretical framework to derive a price 
estimate of European call and put options. Their log-normal distribution of the re-
turns is based on Brownian motion (Broadbent et al., 1928). 

The mainstream ways of describing the market have been to model the state of 
the market and the traders’ actions separately, with the market being treated as a 
physical particle or mathematical entity, and the traders are seen as a completely 
separate external factor that should be left alone when attempting to describe the 
market. 

To model the behavior of traders, Amos Tversky and Daniel Kahneman formu-
lated prospect theory (Kahneman & Tversky, 1979; Kahneman, 2013), which attempts 
to factor in the “humanity” aspect of trading; arguing that traders value gains and 
losses differently that’s known as loss aversion theory. They proposed that losses 
will always carry a greater emotional impact on an individual, thus gains are gener-
ally perceived as greater probability wise. 

When studying the market, it is crucial to factor in both the market itself and 
the participating traders involved and not separately, because it is together, both the 
market and traders’ overall is what makes up the movement of the market; it is the 
market’s volatility that hampers the participating traders’ decisive decision-making 
ability (traders are initially hesitant whether to buy or sell) and in turn it is the “col-
lective effort” of all the traders (some will buy while others will sell) that eventually 
determine the market’s trend direction (increase or decrease). Thus, the market and 
traders are intertwined or “entangled” with each other, the market’s volatility affects 
the traders and the traders’ actions in turn determine the trend of the market and 
vice versa, in this continuous looping cycle, which fully reflects that the market is 
truly in a random walk. 

We present a methodology to model both the market’s volatile movement (in-
crease or decrease) and the participating trader’s actions (buy or sell) by utilizing 
the concept of the quantum principle of superposition and illustrate that it is the 
two “entangled” that causes the market to be in a random walk which fully conforms 
to the observed market movement as stated by the efficient market hypothesis 
(Xin & Xin, 2021). 

Again, established agent-based and stochastic models tend to treat the market 
and traders separately, however, when modeling market behavior, we have to keep 
in mind that the market’s “behavior” emerges from the interactions between the 
market and traders together as a collective whole of a complex system, essentially 
1 + 1 > 2. Our quantum-like framework is a unified framework that models both 
the market and participating traders together as a collective whole all under complex 
Hilbert Space. Our framework establishes that the market’s random walk arises from 
the complex interactions between the traders and the external environment rather 
than from the simple random fluctuations that are commonly described by stochas-
tic models. 

https://doi.org/10.4236/tel.2025.154049


L. Z. Xin, K. Xin 
 

 

DOI: 10.4236/tel.2025.154049 897 Theoretical Economics Letters 
 

Building off our methodology, we’ve developed an AI assistant economist (one 
that can aid human economists to analyze and forecast the financial market) pow-
ered by our quantum-like evolutionary algorithm that can produce a short horizon 
prediction (one week) of the market’s future movement by studying one month of 
data from the Dow Jones Index (Xin & Xin, 2024). 

The rest of the paper is structured as follows: Section 2 details the methodology. 
Section 3 is the results. Section 4 is the conclusion. 

2. Methods 

The volatility of the market and the hesitation of the traders’ actions are essentially 
intertwined; the uncertain nature of the market hampers traders’ decision-making 
ability of when to buy and sell, and in turn it is the “collective” actions of all the 
participating traders that determines the markets’ closing price in this ever-chang-
ing cycle between the market and traders. 

To effectively model both the volatility of the market and the traders’ actions of 
buy and sell, the concept of quantum superposition principle (Silverman, 2008; 
Feynman, 2015; Dirac, 1958) can be utilized; by “superposing” both the market’s 
states and the traders’ actions. This can be modeled as in (1) and (2). 

 1 1 2 2Q c q c q= +   (1) 

where 1q  denotes the market increases; 2q  denotes the market decreases. 
2

1 1cω =  is the objective frequency that the market increases; 2
2 2cω =  is the ob-

jective frequency that the market decreases. 

 1 1 2 2A a aµ µ= +  (2) 

where 1a  denotes the trader believes that the market increases; 2a  denotes 
the trader believes that the market decreases. 2

1 1p µ=  is the trader’s degree of 
belief that the market increases; 2

2 2p µ=  is the trader’s degree of belief that the 
market decreases. 

The market and all the participating traders can be described as a complex sys-
tem, as (3). 

 1 1 1 2 2 2
1 1

 
N N

i i

i i
c q a c q aψ

= =

= ⊗ + ⊗∏ ∏  (3) 

where N is the number of traders in the group. The density operator of the complex 
system can be described as (4). 

 
market traders

*
1 1 1 2 2 2 1 2 2 1 1 2

1
H.C.

N
i i

i
q q q q c c q q a a

ρ ψ ψ

ω ω

+

=

=

 = + + ⊗ +  
∏

 (4) 

where the third term is a non-diagonalization term that represents the superposi-
tion of the market either increasing or decreasing as well as the traders’ being un-
able to deduce whether the market will increase or decrease. Traders will tend to 
randomly “guess” that the market is increasing or decreasing; the traders’ believ-
ing whether the market is increasing or decreasing is “orthogonal”, and when the 
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number of participating traders is very large then the expectations of all the trad-
ers for whether the market will increase or decrease are then zero as (5). 

 1 2
1

0
N

Ni i

i
a a →∞

=

→∏  (5) 

(4) then becomes (6). 

 market traders 1 1 1 2 2 2
N q q q qρ ω ω→∞

+ → +  (6) 

When there is a vast number of participating traders involved ( N →∞ ), the 
market and all the participating traders as a whole tends to be in a random walk 
( market traders marketρ ρ+ ≈ ) as outlined by the efficient market hypothesis. marketρ  as (7) 
is the actual observed density operator of the market; where 1ω  is the observed 
objective frequency that the market will increase and 2ω  is the observed objective 
frequency that the market will decrease ( 1 2 0.5ω ω≈ = ). 

 market 1 1 1 2 2 2q q q qρ ω ω+=  (7) 

We have shown above that it is the market and the participating traders as a col-
lective whole that make the market become a random walk. It is widely acknowl-
edged that nobody can accurately predict the future trend of the market in the long 
run. Now the question becomes: is it possible to produce a short-horizon forecast 
of the market’s future trend? 

To answer this question, we’ve developed a quantum-like evolutionary algorithm 
to power the AI assistant economist that utilizes both the quantum superposition 
principle and Genetic Programming (GP) (Holland, 1975; Koza, 1992, 1994) to pro-
duce possible short-horizon predictions of the market’s future trend by machine 
learning historical trading data. 

For the AI assistant economist (AI agent), we can hypothesize that before the AI 
agent makes its decision, “believes” whether the market will increase or decrease, are 
“superposed simultaneously” in its “mind”, which can be described by the density 
operator as in (8). 

 * *
agent 1 1 1 2 2 2 1 2 1 2 1 2 2 1A A p a a p a a a a a aρ µ µ µ µ= = + + +  (8) 

where 1p  is the AI agent’s degree of belief that the market increases, 2p  is the 
AI agent’s degree of belief that the market decreases. The third and fourth terms 
in (8) are the “quantum interference” terms that indicate the AI agent’s “mind” is 
undecided on whether the market will increase or decrease, where the AI agent can 
“think” that the market is both increasing and decreasing. 

When an AI agent actually “decides” on whether the market increases or decreases, 
a projection of pure state to mixed state happens in the AI agent’s “mind” as (9), 
which describes the decision-making process of an AI agent. 

 Decide
agent agent 1 1 1 2 2 2p a a p a aρ ρ′ = +→  (9) 

The decision-making process is essentially just a projection from pure state to 
mixed state, where GP, an algorithm based on Darwinian natural selection (Dar-
win, 1859), is utilized to evolve a satisfactory pure state. The pure state is essentially 
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just a 2 × 2 matrix, where (9) can be described by the matrix form represented in 
(10). 

11 12 1projection
agent agent 1 1 1 2 2 2

21 22 2

0
0
p

p a a p a a
p

ρ ρ
ρ ρ

ρ ρ
   ′= → = = +   
   

 (10a) 

 1 2 1 1 2 2

1 0 1 0 0 0
, ; ,

0 1 0 0 0 1
a a a a a a       

= = = =       
       

 (10b) 

Because the pure density operator agentρ  is just an arbitrary 2 × 2 matrix, we can 
then approximately construct this density operator with the 8 most basic quantum 
gates as (11), leading it to become a “matrix tree” (Xin et al., 2023). 

 

i 4

1 1 0 1 0 i 1 01
1 1 1 0 i 0 0 12

1 0 0 1 1 0 1 0
0 i 1 0 0 e 0 1

H X Y Z

S D T Iπ

 −        
= = = =        − −        

 
        = = = =        −        

 (11) 

This “matrix tree” is the tree that’s constructed from the 8 basic quantum gates 
in (11) by the 3 operators’ addition (+), multiplication (×), and or (//); the final 
form that the matrix tree takes is a 2 × 2 matrix, hence the name matrix tree. After 
constructing an individual “matrix tree”, we can then construct a population of 
“matrix trees”, and then by using the fitness function as the evaluation criteria, the 
most satisfactory density matrix agentρ  from the population is evolved through gen-
erations of natural selection. The “matrix tree” is essentially a decision tree that 
guides the AI agent which strategies to “take” with corresponding actions. At any 
given time, the expected value under the current environment (the market is increas-
ing or decreasing) and the corresponding actions (the AI agent “thinks” that the 
market is increasing or decreasing) can be represented as (12). 

 
market agent

2 2 2 2
1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2p q a p q a p q a p q a

ρ ρ

ω ω ω ω

⊗

= + + +
 (12) 

where (12) is the composite system of the market and the AI agent. Essentially, (12) 
describes the four possible outcomes of every “decision” made by the AI agent; if 
the market is increasing or decreasing and the AI agent “thinks” or “doesn’t think 
so” and vice versa; when the AI agent “thinks” correctly in line with the correspond-
ing motion of the market it’s “rewarded”, if not it’s “punished”. The expected value 
for the AI agent is the possible scenarios of what the outcome could be paired with 
the state of the market that’s being observed, as in (13). If the training data has N 
number of values, then the fitness function for the “matrix tree” is defined as (14), 
and it is the total sum of all the expected values of each “decision made” by the AI 
agent. 

1 1 1

1 2 2

2 1

,market increases and AI agent "thinks" so with probaility
,market increases and AI agent doesnn t "think" so with probability
,market decreases and AI agent doesn t "think" so with probt

p p
p p

EV
p

ω
ω
ω

′−
=

′− 1

2 2 2
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p
p pω








(13) 
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 matrixTree
1

fitness
N

t
t

EV
=

= ∑  (14) 

If there are M number of individuals in a population of “matrix trees”, the most 
satisfactory “matrix tree” is the one that possesses the maximum fitness function 
that can be described as in (15). 

 { }output
agent matrixTreearg max fitness , 1, ,

a
k Mρ = =   (15) 

By learning historical data, the more rewards that are reaped, then the more ac-
curate chance, there is of predicting the next outcome of whether the market will 
increase or decrease. 

3. Results 

In this paper, we produced short-horizon forecast outcomes by studying a small 
sample of data. Data from October 4th, 2024 to November 1st, 2024 of the Dow Jones 
Industrial Average Index was used as training data; the following week of Novem-
ber 4th, 2024 to November 8th, 2024 was forecasted. The data was trained twice 
consecutively, with 6 possible forecast outcomes produced each session by 3 AI 
agents. From the 12 total possible forecast outcomes produced by means of majority 
rules, a final trend sequence of whether the market will increase or decrease is pro-
duced to analyze the future trend of the market. The fitting results of the two train-
ing sessions are shown in Figure 1 and Figure 2. The trend sequence produced by 
means of majority rules from the 12 individual possible forecast outcomes is shown 
in Table 1. 
 
Table 1. Final action sequence produced by logic tree. 

Date DJIA Trend Trend Sequence 

11/04/2024 Decreased 0 

11/05/2024 Increased 0 

11/06/2024 Increased 0 

11/07/2024 Decreased 1 

11/08/2024 Increased 0 

 

 
Figure 1. The fitting results of the first training session. 
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Figure 2. The fitting results of the second training session. 

 
Using this action sequence produced, the future trend of the market and the 

market’s volatility can be analyzed. The actual recorded trend of the Dow Jones 
for the following week is listed in the DJIA Trend column, while the trend sequence 
that’s produced is listed in the trend sequence column, where 0 represents the AI 
agent “believes” that the market will increase and 1 represents the AI agent “believes” 
that the market will decrease. 

For this action sequence produced, the predicted trend of the market will be {In-
crease, Increase, Increase, Decrease, Increase}, in which only the first value predicted 
was wrong, thus resulting in odds of 80% accuracy. The main emphasis of the 80% 
accuracy in this case only applies to the short forecast horizon, i.e. the next trading 
week of 5 data points; for a longer period of time, for example if the forecast hori-
zon was extended to 3 months (60 data points), then it would not be possible for our 
algorithm to obtain odds of 80%. Essentially, for a longer forecast, the odds would 
still be closer to 50-50. 

4. Conclusion 

In this paper, we presented a methodology to describe both the volatility of the mar-
ket and the participating traders’ actions together in an intertwined model. By uti-
lizing the concept of quantum superposition principle to model both the state of the 
market and all the participating traders’ possible actions as a whole, we show that 
the market is indeed in a random walk as stated by the efficient market hypothesis. 
Unlike traditional methods that don’t factor in the participating traders, which treat 
the market as a mathematical or physical entity (particle) where calculus is needed 
to describe it; we are able to subtly model both the market without a statistical ap-
proach. 

Since the future is inherently unpredictable, no matter what we do, there is no 
universal omnipotent method that can find the crystal ball to peer into and see the 
future, therefore, if a black swan suddenly landed, there is really nothing we can do 
to foresee it. Thus, in this paper and our methodology’s approach in general, we 
have deliberately chosen a small sample of historical data of about 20 data points 
to produce a short horizon forecast of 5 future points, assuming that the market 
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will “keep” its “relative” trend of the recent past in the near future, and even in this 
case, our method is not 100% fail-proof—odds may not always reach 80%. How-
ever, if a black swan really does alight, our AI assistant economist won’t be able to 
predict this either, in which we will just have to “trust our instincts” to “throw” the 
dice back and hope for the best outcome. 
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